
RSolver User Manual

Stefan Ratschan

November 20, 2013

http://www.cs.cas.cz/~ratschan

Chapter 1

Introduction

Take the expression x2+y2+z2 ≤ 1, where the variables x, y and z range over
the real numbers. This expression represents a set of values—its solution
set, which is a ball. We call such an expression a constraint. Solving a
constraint means to find some interesting information about its solution
set, where the definition of “interesting” depends on the application. For
example, we might want to find a point in the solution set, or we might want
to find an approximation of the solution set by hyper-rectangles.

This software package solves a special type of constraints, namely quan-

tified constraints. Take the following example: ∃z ∈ [−2, 2]x2 + y2 + z2 ≤ 1.
Here we encounter the symbol ∃—an existential quantifier. The solution set
of this constraint is the set of all x and y such that there is a z such that
x2 + y2 + z2 ≤ 1 holds. Clearly this is a disc, that is, the projection of the
solution set of x2 + y2 + z2 ≤ 1 onto the two-dimensional real space. Such
a projection can be very convenient, because one can easily visualize sets in
two-dimensional real space.

A quantified constraint can also contain the symbol ∀, that is, universal
quantifiers. This can be very useful for dealing with uncertain values. These
occur, for example, in robust control [4], where one studies notions such as
the stability of systems under uncertain values.

A quantified constraint can also contain the Boolean symbols for conjunc-
tion and disjunction. In general, it is a formula in the first-order predicate
language [5] over the reals.

Traditionally, such constraints have been solved by symbolic methods [17,
2, 3]. However, these methods suffer from various drawbacks—especially for
inputs that model real-world problems. Instead of symbolic solutions, the
algorithm [12] employed in this software computes solutions that are ap-
proximate but correct.

For example, in Figure 1.1 you can see a visualization of the solution
computed for the constraint ∃z ∈ [−2, 2]x2 + y2 + z2 ≤ 1. Here you can see
a green area—elements that are guaranteed to be within the solution set, a

1

read area—elements that are guaranteed to be out of the solution set, and
a white area—elements for which we do not have any information.

The user can specify an error bound—the maximum allowed fraction of
the white area wrt. the total area. For example, the error bound used for
Figure 1.1, was 0.05.

Figure 1.1: Solution for ∃z ∈ [−2, 2]x2 + y2 + z2 ≤ 1

The software packages solves quantified constraints, that is, formulae in
the first order predicate language over the reals. Classically such constraints
have been solved by symbolic methods [17, 2, 3]. However, these methods
suffer from various drawbacks—especially for inputs that model real-world
problems. The algorithm [12] employed in this software computes solutions
that are approximate up to a user-provided error bound. It uses various sub-
algorithms from the area of interval computation [10, 11, 9] and constraint
programming [18].

2

Chapter 2

Running a First Example

RSolver itself works in text mode. An additional graphical user inter-
face (GUI) is available. For using the GUI, download it and follow the
instructions in the files README.WINDOWS (if you are using Microsoft
Windows) or README (otherwise).

When starting RSolver without the GUI, it asks for textual input.
Some example inputs are included in the distribution. One can avoid to re-
type the content of an example file by piping the file content to the program
as follows:

In UNIX: Type

./rsolver <examples/basic/test1.ap

In Windows: Start the program “command prompt”, change to the di-
rectory where the program resides, and type:

rsolver <examples\basic\test1.ap

3

Chapter 3

The Input

The following is an example program input:

[x, y]

EXISTS [z] [[-2, 2]] [x^2+y^2+z^2<=1 /\ y>=x^2];

[[-2,2], [-2,2]]

The three elements represent the following objects:

• the variables that span the solution space (i.e., free variables),

• the quantified constraint ∃z ∈ [−2, 2][x2 + y2 + z2 ≤ 1 ∧ y ≥ x2],

• a box (i.e., Cartesian product of closed intervals) of the same dimension
as the free variables.

In general, the representation of the input constraint can contain the
following symbols:

Quantifiers: FORALL, EXISTS

Connectives: \ /, / \ , ==>

Predicates: <, <=, >, >=

Function Symbols: *, +,ˆ , SIN, COS, EXP, ASIN, ACOS, ATAN, LOG

Constants: floating point numbers, PI, E

Variables: lowercase alphanumeric strings starting with a letter

All binary symbols are infix, and all other prefix. One can use parenthesis
for the term structure and brackets for the logical structure. Quantifiers have
three arguments:

1. a list of quantified variables,

4

2. a floating point bounding box on these variables, and

3. the quantified constraint.

Note that quantifiers bind stronger than connectives. Hence the input

EXISTS [x] [[1,3]] x>0 /\ x<2;

will result in the error message that the variable x cannot be found. Using
brackets, arriving at

EXISTS [x] [[1,3]] [x>0 /\ x<2];

solves the problem.
Although the software also allows equality predicates = it currently is

not able to deduce positive information for them. Work on constraints with
equalities is in progress.

Trigonometric functions expect their input in radians.

5

Chapter 4

Produced Output

The output is a set of boxes on which the input is guaranteed to be true, a
set of boxes, on which the input is guaranteed to be false, and a set of boxes
for which we do not know anything. Note that if the input contains function
symbols that are not defined everywhere (e.g., asin is only defined on the
interval [-1, 1]), then also the truth value of the corresponding constraint
might be undefined, and no corresponding box of true or false values will be
computed.

In some cases, the software also prints witnesses corresponding to these
boxes. For example, in the case when an existentially quantified constraint
has been proven to hold, in certain cases it also prints a witness for this
quantifier, that is, a point for which the constraint under the quantifier
holds.

There is a separate graphical user interface, which prints true boxes in
green and false boxes red boxes in red. Note that the graphical output is
not faithfully rounded. For example, a green and a red box might touch on
the screen, although the computed boxes do not.

6

Chapter 5

Running RSolver

After starting the program, it asks for the inputs described in Chapter 3.
Example inputs are contained in the distribution package. For controlling
the solver further, one can use arguments when calling the program. These
arguments are described when calling the solver by rsolver -h.

Note that the efficiency of the algorithm depends on the specific form, an
input constraint is given. For example, a constraint of the form ∀x [φ1 ∧ φ2]
is handled in a different way than a constraint of the form ∀xφ1 ∧ ∀xφ2.

Usually (but not always!) the following transformations increase the
efficiency:

• Rewriting constraint of the form ∀x [φ1 ∧ φ2], or ∃x [φ1 ∨ φ2] to
∀xφ1 ∧ ∀xφ2, and ∃xφ1 ∨ ∃xφ2, respectively.

• Factoring terms as much as possible.

• Decomposing terms that can be written as f(g(x)) to a term f(y) with
an additional constraint y = f(x).

Other possibilities of influencing the efficiency of RSolver are the
following:

• If the input has a large linear part it often helps to switch on linear
relaxations using the flag -f LinearRelaxation.

• If the solver tends to produce many small boxes for a certain example,
the use of mean value constraints [7], using the flag -f MeanValueConstraint,
may help.

If RSolver still cannot solve your problem, we strongly encourage
you to contact us (stefan.ratschan@cs.cas.cz). Your feedback will be
essential for improving the software further.

7

Chapter 6

Relaxation Algorithm

The solver provides a special algorithm for constraints of the form

(∃~a ∈ A)
∧

k

θk(~a)

where θk(~a) is either of the form
∑

i
ciai + di = 0, or of the form

(∀~x ∈ X)

(

∑

i

aiφi(~x) ≤ 0 ∨ ψ(~x)

)

,

where φi(x) and ψ(x) may be an arbitrary Boolean combination of con-
straints, but they are only allowed to contain the variables ~x.

For using this algorithm, RSolver has to be called using the parameters
-f Sample -p DeductionStrategy RelaxationUniv, and the existential
quantifier has to be written in the variant EXISTS*. See the examples in the
directory examples/relax of the distribution.

The corresponding algorithm exploits the fact that the ai only occur
linearly. This allows solving the problem using linear-programming relax-
ations [16].

8

Chapter 7

Program Termination

Consider the constraint ∃x ∈ [−2, 2] x2 − 1 ≤ 0. This constraint certainly is
true. Now replace the zero on the right-hand side of the equality by a very
small real number ε. Certainly this does not change the truth value. Hence
we call such a constraint robust. On the other hand, consider the constraint
∃x ∈ [−2, 2] x2 ≤ 0. It is also true, but changes its truth value to false if
we replace the zero by a very small negative constant. Hence we call such a
constraint fragile.

The algorithm inRSolver uses approximation. So it will usually not use
the exact value of constants, but can only enclose them into small intervals.
Therefore, it will in general not be able to compute the truth value of fragile
constraints. But it will always terminate for robust constraints. So in that
case you will always get an answer, provided you are willing to wait long
enough.

Note that in practice, especially for constraints that are almost fragile, it
might also happen that floating point precision is not sufficient to compute
an answer. In that case, the system will terminate with an according error
message.

For more information on the property of being robust or fragile, you
can read some articles for the case of quantified constraints [13] or gen-
eral books on numerical analysis (under the terms “well-posed”, “ill-posed”,
“well-conditioned”, “ill-conditioned”).

9

Chapter 8

The Algorithm

A detailed description of the algorithm employed by this software can be
found in other papers [15]. Some preprints are available from the author’s webpage.

For using the software it is not necessary to grasp all its internal details.
However—for using it efficiently—it can be useful to understand roughly,
how the algorithm works:

The basic idea is, to compute some information for the atomic sub-
constraints (e.g., the occurring inequalities), and using it to compute some
information of the total constraint. If this procedure fails, we decompose
the variable space into pieces, until some new information can be deduced.

In the simplest case, we use the following test on atomic constraints:

• Given:

– An atomic constraint φ,

– a box B

• Find: An element of the set {T,F,U} such that

– T implies that φ is true for all elements of B, and

– F implies that φ is false for all elements of B.

Such a test is provided by techniques of interval analysis [11, 8]. Of
course, the test should return T or F as often as possible. Except for
degenerate cases, such tests succeed to do this for sufficiently small boxes.

Consider the example ∃y ∈ [−2, 2] x2 + y2 ≤ 1, where the variable
x ranges over the interval [−2, 2]. Here we just have one atomic sub-
constraint—x2 + y2 ≤ 1—on which to do the test. Of course, for the box
[−2, 2] × [−2, 2] it can only fail. Therefore the algorithm will do branch-
ing: it will either split the interval corresponding to a free variable into two
parts, or it will rewrite ∃y ∈ [−2, 2] x2 + y2 ≤ 1 to the equivalent constraint
∃y ∈ [−2, 0] x2 + y2 ≤ 1 ∨ ∃y ∈ [0, 2] x2 + y2 ≤ 1. In a similar way it can

10

http://www.cs.cas.cz/~ratschan

split universal quantifiers into a conjunction of several universally quantified
constraints.

This splitting can be prohibited by using starred versions of the quanti-
fiers, that is, by using FORALL*, and EXISTS*.

More details can be found in some articles [12, 14].

11

Chapter 9

The Implementation

The software is implemented in the programming language O’Caml. It uses
the interval and constraint propgation library smathlib [6] .

12

http://www.ocaml.org

Chapter 10

Known Bugs

In contrast to the solving algorithms, parsing and printing currently may
introduce errors due to rounding. For printing the exact result, one can use
the flag -f ExactBoundaries.

13

Bibliography

[1] B. F. Caviness and J. R. Johnson, editors. Quantifier Elimination and

Cylindrical Algebraic Decomposition. Springer, Wien, 1998.

[2] G. E. Collins. Quantifier elimination for the elementary theory of real
closed fields by cylindrical algebraic decomposition. In Second GI Conf.

Automata Theory and Formal Languages, volume 33 of LNCS, pages
134–183. Springer Verlag, 1975. Also in [1].

[3] G. E. Collins and H. Hong. Partial cylindrical algebraic decomposition
for quantifier elimination. Journal of Symbolic Computation, 12:299–
328, 1991. Also in [1].

[4] P. Dorato, W. Yang, and C. Abdallah. Robust multi-objective feedback
design by quantifier elimination. Journal of Symbolic Computation,
24:153–159, 1997.

[5] H.-D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic.
Springer Verlag, 1984.

[6] T. J. Hickey. smathlib. http://interval.sourceforge.net/interval/prolog/clip/clip/smath/

[7] T. J. Hickey. Metalevel interval arithmetic and verifiable constraint
solving. Journal of Functional and Logic Programming, 2001(7), Octo-
ber 2001.

[8] L. Jaulin, M. Kieffer, O. Didrit, and É. Walter. Applied Interval Analy-

sis, with Examples in Parameter and State Estimation, Robust Control

and Robotics. Springer, Berlin, 2001.

[9] R. B. Kearfott. Interval computations: Introduction, uses, and re-
sources. Euromath Bulletin, 2(1):95–112, 1996.

[10] R. E. Moore. Interval Analysis. Prentice Hall, Englewood Cliffs, NJ,
1966.

[11] A. Neumaier. Interval Methods for Systems of Equations. Cambridge
Univ. Press, Cambridge, 1990.

14

http://interval.sourceforge.net/interval/prolog/clip/clip/smath/README.html

[12] S. Ratschan. Continuous first-order constraint satisfaction. In J. Cal-
met, B. Benhamou, O. Caprotti, L. Henocque, and V. Sorge, editors,
Artificial Intelligence, Automated Reasoning, and Symbolic Computa-

tion, number 2385 in LNCS, pages 181–195. Springer, 2002.

[13] S. Ratschan. Quantified constraints under perturbations. Journal of

Symbolic Computation, 33(4):493–505, 2002.

[14] S. Ratschan. Search heuristics for box decomposition methods. Journal
of Global Optimization, 24(1):51–60, 2002.

[15] S. Ratschan. Efficient solving of quantified inequality constraints
over the real numbers. ACM Transactions on Computational Logic,
7(4):723–748, 2006.

[16] S. Ratschan and Z. She. Providing a basin of attraction to a target re-
gion of polynomial systems by computation of Lyapunov-like functions.
SIAM Journal on Control and Optimization, 48(7):4377–4394, 2010.

[17] A. Tarski. A Decision Method for Elementary Algebra and Geometry.
Univ. of California Press, Berkeley, 1951. Also in [1].

[18] P. Van Hentenryck, D. McAllester, and D. Kapur. Solving polynomial
systems using a branch and prune approach. SIAM Journal on Numer-

ical Analysis, 34(2):797–827, 1997.

15

	Introduction
	Running a First Example
	The Input
	Produced Output
	Running RSolver
	Relaxation Algorithm
	Program Termination
	The Algorithm
	The Implementation
	Known Bugs

